The van der Pol Negative Resistance Oscillator

Van der Pol's analysis ${ }^{1}$ of "negative resistance" (e.g., tunnel diode) oscillators prides a valuable framework for treating relative simplicity important features of oscillatory systems.

The characteristic curve of a "negative resistance" device

Consider the following negative resistance oscillatory circuit:

By simple circuit analysis, it is a straightforword proposition to find the following simple circuit equation which is the fundamental van der Pol oscillator equation:

[^0]\[

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} v(t)-\frac{d}{d t}\left[\alpha v(t)-\bar{\beta} v^{3}(t)\right]+\omega_{0}^{2} v(t)=0 \tag{VdP-1}
\end{equation*}
$$

\]

where $\omega_{0}^{2}=(L C)^{-1}$.
If α is small, it is reasonable to take

$$
v(t)=\frac{1}{2} V(t) \exp \left(-i \omega_{0} t\right)+c . c .
$$

[VdP-2]

Then Equation [VdP-1] becomes without approximation

$$
\left.\begin{array}{l}
\left\{\frac{1}{2}\left[-\omega_{0}^{2} V(t)-i 2 \omega_{0} \dot{V}(t)+\ddot{V}(t)\right] \exp \left(-i \omega_{0} t\right)+c . c .\right\} \\
-[\alpha-3 \tag{VdP-3}
\end{array}\right)
$$

If we ignore harmonic generation, Equation [VdP-3] may be approximated as

$$
\begin{align*}
&\left\{\frac{1}{2}\left[-i 2 \omega_{0} \dot{V}(t)+\ddot{V}(t)\right] \exp \left(-i \omega_{0} t\right)+c . c .\right\} \\
&- \alpha\left\{\frac{1}{2}\left[-i \omega_{0} V(t)+\dot{V}(t)\right] \exp \left(-i \omega_{0} t\right)+c . c .\right\} \tag{VdP-4}\\
&+\frac{3}{8} \bar{\beta}\left[\left\{-i \omega_{0}|V(t)|^{2} V(t)+\frac{d}{d t}\left[|V(t)|^{2} V(t)\right]\right\} \exp \left(-i \omega_{0} t\right)+c . c .\right]=0
\end{align*}
$$

If we make the slow time variation assumption, this equation reduces to

$$
\begin{equation*}
\dot{V}(t)=\frac{1}{2}\left[\alpha-\frac{3}{4} \bar{\beta}|V(t)|^{2}\right] V(t)=\frac{1}{2}\left[\alpha-\beta|V(t)|^{2}\right] V(t) \tag{VdP-5}
\end{equation*}
$$

where $\beta=3 \bar{\beta} / 4$. This essential Equation [VI-25b] in the lecture set entitled The Interaction of Radiation and Matter: Semiclassical Theory. We saw there that the general steady state solution is given by

$$
\begin{equation*}
|V(t)|^{2}=\frac{\alpha}{\beta} \tag{VdP-6}
\end{equation*}
$$

To study frequency locking we suppose that a driving source (to be precise a current source in parallel with the negative resistance) and then the van der Pol equation becomes

$$
\begin{align*}
\frac{d^{2}}{d t^{2}} v(t)-\frac{d}{d t}\left[\alpha v(t)-\bar{\beta} v^{3}(t)\right]+\omega_{0}^{2} v(t) & =\omega^{2} V_{0} \sin \omega t \\
& =\frac{\omega^{2} V_{0}}{2}[i \exp (-i \omega t)+\text { c.c. }] \tag{VdP-7}
\end{align*}
$$

In this case, it is reasonable to take

$$
\begin{equation*}
v(t)=\frac{1}{2} V(t) \exp (-i \omega t)+c . c . \tag{VdP-8}
\end{equation*}
$$

If we again ignore harmonic geneation, Equation [VdP-7] becomes

$$
\begin{gather*}
\left\{\frac{1}{2}\left[-\omega^{2} V(t)-i 2 \omega \dot{V}(t)+\ddot{V}(t)\right] \exp (-i \omega t)+c . c .\right\} \\
-\left[\alpha-3 \bar{\beta} v^{2}(t)\right]\left\{\frac{1}{2}[-i \omega V(t)+\dot{V}(t)] \exp (-i \omega t)+c . c .\right\} \tag{VdP-9}\\
+\omega_{0}^{2}\left\{\frac{1}{2} V(t) \exp (-i \omega t)+c . c .\right\} \\
=\frac{\omega^{2} V_{0}}{2}[i \exp (-i \omega t)+c . c .]
\end{gather*}
$$

Again under the slow time variation assumption, this equation reduces to

$$
\begin{equation*}
\frac{1}{2}\left(\omega_{0}^{2}-\omega^{2}\right) V(t)-i \omega \dot{V}(t)+i \omega \frac{1}{2}\left[\alpha-\beta|V(t)|^{2}\right] V(t)=i \frac{\omega^{2} V_{0}}{2} \tag{VdP-10}
\end{equation*}
$$

If we take $V(t)=|V(t)| \exp (-i \Psi(t))$, this equation separate into the following pair of equations:

$$
\begin{gather*}
|\dot{V}(t)|=\frac{1}{2}\left[\alpha-\beta|V(t)|^{2}\right]|V(t)|-\frac{\omega V_{0}}{2} \cos \Psi(t) \tag{VdP-11a}\\
\dot{\Psi}(t)=\frac{1}{2} \frac{\left(\omega_{0}^{2}-\omega^{2}\right)}{\omega}+\frac{\omega}{2} \frac{V_{0}}{|V(t)|} \sin \Psi(t)=d+l \sin \Psi(t)
\end{gather*}
$$

[VdP-11b]
where $d \equiv \frac{1}{2} \frac{\left(\omega_{0}^{2}-\omega^{2}\right)}{\omega}=\left(\omega_{0}-\omega\right)$ (the "detuning term") and $l \equiv \frac{\omega}{2} \frac{V_{0}}{|V(t)|}$ (the "locking

The van der Pol Negative Resistance Oscillator

coefficient"). For small V_{0} we can decouple the equations and take $|V(t)|^{2}=\frac{\alpha}{\beta}$ from Equation [VdP-6] so that $l \equiv \frac{\omega}{2} \frac{V_{0}}{|V(t)|}=\frac{\omega}{2} \frac{\beta}{\alpha} V_{0}$. If $|d / l| \gg 1$ the relative phase angle changes linearly in time at the rate $\dot{\Psi} \approx d$. As $|d| l \mid$ decreases toward unity, the "locking term" subtracts from the "detuning term" in one half of a cycle and adds in the other half. At $|d| l \mid \leq 1$ there are two values of the phase angle that yield the "mode locking" condition $\dot{\Psi}=0--v i z$.

$$
\Psi_{\mathrm{PL}}=\left\{\begin{array}{c}
-\sin ^{-1}(d / l) \tag{VdP-12}\\
\pi+\sin ^{-1}(d / l)
\end{array}\right.
$$

We can test the stability of these solutions by taking $\Psi(t)=\Psi_{\mathrm{PL}}+\varepsilon(t)$ and therefore Equation [VdP-11b] becomes

$$
\begin{equation*}
\dot{\varepsilon}(t) \approx l \cos \left(\Psi_{\mathrm{PL}}\right) \varepsilon(t) \tag{VdP-13}
\end{equation*}
$$

and the solutions are stable if

$$
\begin{array}{lc}
l \cos \left(\Psi_{\mathrm{PL}}\right)<0 & {[\mathrm{VdP}-14 \mathrm{a}]} \\
\sqrt{l^{2}-d^{2}}<0 & {[\mathrm{VdP}-14 \mathrm{~b}]}
\end{array}
$$

The van der Pol Negative Resistance Oscillator

[^0]: 1 B. van der Pol, Radio Rev. 1, 704-754, 1920 and B. van der Pol, Phil. Mag. 3, 65, 1927

